Robert Fischer, Lucila Ohno-Machado, Dorothy Curtis, Robert Greenes, Thomas Stair, John Guttag

Division of Health Sciences and Technology, Harvard-MIT Computer Science and Artificial Intelligence Laboratory, MIT Decision Systems Group and Emergency Medicine Department, Brigham and Women’s Hospital

April, 2004
Outline

I. Pervasive Medical Monitoring
 What, Why, Why Now?

II. SMART Project
 Goals
 Architecture
 Operations
 Challenges

III. Evaluation
 Status
 Plans
What is Pervasive Medical Monitoring?

- Monitoring patients’ vital signs in non-traditional contexts:
 - At home
 - At work
 - While exercising
 - While waiting for medical attention
- Access to patient information instrumental for making good decisions and taking action
 - Location
 - Vital Signs
 - Past medical history
Why Is Pervasive Medical Monitoring Important?

- Response time is critical
 - e.g., stroke, myocardial infarction
- Allows for increased outpatient care
 - Decrease length of hospital stay
- Increases patient independence
 - Increased mobility & control of environment
- Changing Demographics
 - More elderly, more people living alone
- Increases provider efficiency
 - Lower costs for all
Why Now?

– Advances in microelectronics make devices
 • easier to build
 • less expensive
 • lower power
 • lighter weight

– Advances in wireless technologies
 • 802.11 drove the wireless revolution
 • Bluetooth
 • Zigbee

– Patients and health care providers are familiar with information technology
 • Web
Ideal Elderly Care

• Patient: elderly woman
 – Debilitating multiple sclerosis
 – Lives at home with husband
 – Husband works during the day

• Situation:
 – Woman trips and falls, breaking her hip and losing consciousness

• Response:
 – At-home monitors notice she is lying on floor
 – Monitors notify her husband, EMTs and hospital
 – Hospital receives full vital sign history
 – Monitors continue to work throughout ambulance ride
 – Triage decisions are based on these data
 – Trauma team is ready for patient upon arrival
 – Husband arrives at hospital soon after patient
Pervasive Medical Monitoring Testbed: SMART

• Opportunity to deploy pervasive medical monitoring in Emergency Department of Brigham & Women’s Hospital (Boston, MA)

• Controlled environment: test technologies before deploying in non-traditional settings.
 – In SMART, only patients with chest pains or respiratory complaints will be monitored

• Goal: develop infrastructure for increased use of pervasive medical monitoring.
Challenges: Emergency Care

• Excessive time spent in waiting room
 – 3 hour wait for medical care
• Difficulty finding patients, personnel and equipment when needed
 – over 50 beds in three units at BWH ED
• Understaffing
• Units must expand and contract
• Triage Priority System cannot account for changes:
 – Medical conditions can worsen in waiting room
• Too many uncoordinated alarms and alerts: sensory overload for caregivers
Waiting Room Emergencies

• Emphysema patient arrives at ED
 – Chief complaint: shortness of breath
 – Patient is likely not in serious trouble, receives triage status 3
 • But oxygen saturation level could fall, placing patient at imminent risk (status 1)
 – Respiration problems difficult to monitor by triage nurse

• Sensors can identify this problem easily.
 – Computers can alert triage nurse immediately
SMART Operations

1.

2.

3.

4.

Exit
SMART Architecture
Challenges: Medical Sensors

• Trade off quality data vs. price/weight
 – SMART must deal with noisy data
 – Sensors can fall off of patients
• Oximeter (SpO$_2$)
• 2-Lead ECG
• Other sensors: Respiration, Blood Pressure
Challenges: Location Sensors

- **Cricket**
 - Location determined at PDA
 - No extra wires required (for light powered cricket)
 - Requires extra accessories on PDA
- **802.11**
 - Location determined by separate infrastructure
 - Extensive wiring required
 - No additional hardware needed at PDA
- **RFID**
 - For tracking equipment
 - Larger granularity
- **GPS**
 - Outdoors
 - In ambulance
Challenges: Managing Sensor Data

• Time stamping data from multiple sources
 – Synchronized clocks required
• Storing and retrieving continuous streams of data
• Dealing with noisy data from low-cost sensors
 – Motion artifacts: Patient movement can affect sensor readings
 – Gaps in waveform data: sensor falls off, patient walks out of range.
Challenges: Decision Support

- Integrate data from multiple sensors
- Recognize potentially dangerous medical conditions
- Allocate equipment and personnel to handle critical medical conditions
- Avoid broadcast alerts
- Re-prioritize patients according to present medical condition
- Integrate with current procedures
- Minimize false alarms
- Allocate decision support tasks between PDAs and SMART Central
Challenges: Privacy

- Must maintain patient privacy (HIPAA)
- Simple, flexible, consistent access control framework
 - Works across all SMART devices
 - Determines who sees what data
- Wireless encryption
 - Key distribution
 - Power consumption
 - Significant for the smallest sensors (motes)
Challenges: Scalability

• Dimensions of scalability
 – More patients
 – Bigger/Improvised ED
 – Use of technology in more settings

• SMART scales easily
 – SMART Central can be replicated
 – Addition of patient involves addition of PDA and associated processing power
 – Limited global interaction required for very large improvised care facility
Evaluation

SMART will be evaluated *by the medical community* based on tangible medical results:

- Improved response time for emergencies that develop in the waiting room?
- Improved triage priorities in waiting room?
- Improved Emergency Department (ED) operations during peak (overload) demand?
- End user acceptance?
Status

- Evaluating sensors
- Evaluating location systems
- Evaluating streaming databases
- Developing user interfaces
- Developing evaluation study
- Obtaining Institutional Review Board approval
Plans

- Deploy in laboratory environment by end of summer 2004
- Deploy in limited scale at BWH ED in a small number of patients by summer 2005
- Deploy in all eligible patients at BWH ED from Sept 2005- August 2006
- Extend to Ambulances, 2006
- Plan for Mass Casualty Events
Acknowledgement

We would like to thank the National Library of Medicine, NIH for funding this work.